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Abstract: This study aims to model the spatial distribution of tuberculosis (IB)
cases in Makassar City in 2022 using the Geographically Weighted Poisson
Regression (GWPR) approach. This method extends Poisson regression by
incorporating spatial heterogeneity, weighting each location based on its
geographical proximity. Two types of kernel weighting functions, fixed
Gaussian kernel and fixed bi-square kernel, were used to determine the most
effective model for identifying key factors influencing TB case numbers. The
parameter estimation results indicate that the GWPR model with fixed bi-
square kernel performs better than the global Poisson regression model,
achieving an Akaike’s Information Criterion (AIC) value of 97.69 and a

coefficient of determination (R? of 99.93%. The findings reveal that the
relationship between predictor variables and TB cases varies across districts,

with the percentage of the productive-age population and population density
emerging as dominant factors. These results highlight the advantages of the
GWPR approach in capturing spatial dynamics more effectively than
conventional regression models, making it a powerful analytical tool for
designing targeted, region-specific public health interventions.

Keywords: Geographically Weighted Poisson Regression, Fixed Gaussian Kernel, Fixed Bi-
square Kernel, Spatial Analysis, Tuberculosis.

1. Introduction

Regression analysis is a statistical method used to examine the relationship between one or
more independent variables and a dependent variable (Astriawati, 2016). The Ordinary Least
Squares (OLS) method is commonly used in regression analysis, but it has limitations as it
does not account for the spatial structure of data. To address this issue, spatial regression was
introduced, incorporating spatial aspects to capture relationships between neighboring
observational units (Sejati et al., 2022). However, spatial regression still struggles to handle
local variations (Nurmasari, 2016).

Geographically Weighted Regression (GWR) provides a more adaptable method by assigning
unique weights to each data point according to its spatial proximity to the location under
analysis (Widyaningsih & Fitrianingrum, 2022). This method incorporates the idea that the
impact of independent variables can differ across geographic locations, thereby capturing
dynamic spatial patterns. Building on this concept, Geographically Weighted Poisson
Regression (GWPR) extends the principles of GWR to model dependent variables that follow
a Poisson distribution, which is especially beneficial for modeling event frequencies in
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specific regions (Arini & Nanih, 2022). GWPR is particulatly effective in addressing intricate
spatial vatiations in data distributions (Ananda et al., 2023).

Conventional Poisson regression models do not account for spatial variability, despite the
fact that spatial heterogeneity often exists, where a predictor’s influence may differ from one
location to another. Geographically Weighted Poisson Regression (GWPR) addresses this
limitation by incorporating spatial context through a kernel-based weighting mechanism,
either fixed or adaptive (Tizona et al., 2017), enabling the model to better capture location-
specific effects in Poisson-distributed outcome variables.

Tuberculosis (TB) remains one of the leading infectious diseases globally, with mortality and
case rates continuing to rise (Suprtiyanti, 2022). In Makassar City, the burden of TB is
particularly severe, with 5,444 cases reported out of an estimated 14,000 in 2022. Applying
Geographically Weighted Poisson Regression (GWPR) to TB data is essential, as it
accommodates complex spatial heterogeneity and allows for the identification of localized
transmission patterns. This spatially sensitive approach facilitates the development of more
targeted public health strategies. Moreover, GWPR improves the precision of regression
modeling by detecting high-risk clusters, thereby supporting more effective disease control
efforts (Tuasikal, 2018; Septiani, 2021; Helmy et al., 2022).

This study focuses on the Geographically Weighted Poisson Regression (GWPR) model
using fixed Gaussian kernel and fixed bisquare kernel weighting, applied to TB case data in
Makassar City.

2. Literature Review
2.1. Pozsson Distribution

The Poisson distribution is a probability model used to describe events that occur with a low
probability, where the events are influenced by a specific time frame or geographical region,
and the outcomes are represented by discrete variables (Otaya, 20106). It is one of the simplest
models for analyzing count data, which consists of non-negative integer values (Budiharti,
2021).

The probability mass function (PMF) of the Poisson distribution is expressed as follows
(Walpole, 1995):

e_/“uy
PO =—— =012..)

Where p denotes the expected number of occurrences in a given time petiod or area, and y
represents the observed number of events during that period or in that region.

2.2. Poisson Reoression
4

The Poisson regression model is a type of regression analysis based on the Poisson
distribution, often utilized for examining data where the response variable is discrete. It is
classified as a nonlinear regression model (Kusuma et al., 2013). A defining feature of Poisson
regression is equidispersion, which indicates that the mean and variance are equal. The
relationship between the response variable (Y) and the predictor variable (X) is represented
as follows (Esra et al., 2023):

E (((YilX) = Bo+ Bixy + Boxg + -+ Bpxn + &
Thus, the Poisson model can be written as follows:

E(W(YX) = wi= exp( xiTﬁ),i =12,..,n

where @ represents the unknown parameter that needs to be estimated, and x; is the
independent variable.
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2.2.1. Parameter Estimation in Poisson Regression

The Mascimum Likelibood Estimation (MLE) method is commonly used to estimate the
parameters of the Poisson regression model (Fauziah, 2021). The log-likelihood function,
maximized using the MLE method, is given as follows:

dlnlL n
STT(/D = Zizl(—xi exp(x]B) + yix;

2.2.2. Partial Test

The parameters estimated in the model may not always exhibit a substantial effect. Hence, it
is necessary to conduct a partial or individual test to evaluate the significance of each
parameter. The hypotheses for this test are outlined as follows:

Ho: Bx = 0 (The k-th variable has no significant effect)

Hj: fx # 0 (The k-th variable has a significant effect)

The test statistic is given as:
Br
~ ’
se (Bx)

2.2.3. Spatial Heterogeneity Test

Spatial heterogeneity testing is conducted to assess whether the data of the response variable
show point-based spatial heterogeneity. This can be evaluated using the Breusch-Pagan (BP)
test.

2.3. Geographically Weighted Regression (GWK)

Geographically Weighted Regression (GWR) is an advanced method used to model spatial
heterogeneity. Spatial heterogeneity refers to the variations or differences in characteristics
across various geographic areas (Soraya et al., 2016). The spatial heterogeneity model in GWR
can be represented as follows (Wang et al., 2014):

vi = Bo (i, vi)+ 2?’:1 Bi(wi,vi)xy+e, (i=12,..n)

In this model, yi represents the observed value of the response variable at observation i,
while xij refers to the observed value of the predictor variable j at observation i. The term
Bo(ui, vi) denotes the intercept of the regression model, and Sj(ui, vi) indicates the
regression coefficient for j = 0, 1, 2, ..., k. Furthermore, ui and vi represent the spatial
coordinates of observation i, and &l is the error term associated with observation i.

2.4. Geographically Weighted Poisson Regression (GWPR)

Geographically Weighted Poisson Regression (GWPR) is an extension of the Poisson
regression model that incorporates spatial variations within the data. Unlike traditional global
Poisson regression, where the parameter estimates remain constant across all locations,
GWPR enables these estimates to vary according to geographic position (Millah, 2015). This
characteristic makes GWPR a more adaptable and region-specific method, allowing it to
capture spatial heterogeneity with greater precision (Qomariyah et al., 2013).

For a given location i, with coordinates (ui,vi), the GWPR model is expressed as:
wi (i, vi)= exp(X{ B(u;, v)), i = 1,2,...,1n
With
B = (uivi) = [B(uyvi) By (wivi) Balusvy) - .Bp(ui,vi)]T
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2.5. Geographically Weighted Poisson Regression (GWPR)

In GWPR, the kernel weighting function incorporates a parameter known as bandwidth,
which can be interpreted as the radius (b) of a circle that determines the influence of nearby
data points. To find the optimal bandwidth, one widely applied approach is Cross-Validation
(CV), which is computed using the following formula (Sogen et al., 2023):

V=" i 9u B

This research employs two different types of spatial weighting functions: the fixed Gaussian
kernel and the fixed bi-square kernel.
N2
® TFixed gaussian kernel: w;;(u; v;) = exp (— (ﬁ) )

b
2
dij\?
® Fixed bi-square kernel : w;; (u;v;) = <1 B (7) ) » untuk dij < b
0 ,untuk d;j > b

where b is a non-negative parameter referred to as the bandwidth, b;i represents the
bandwidth at location i, and dij denotes the Euclidean distance between locations i and j.

2.6. Selecting the Best Model
2.6.1. Akaike Information Criterion (AIC)

In spatial modeling, the Akaike Information Criterion (AIC) is a commonly used tool for
selecting the most appropriate regression model. The optimal model is identified by the
lowest AIC value, as a lower AIC signifies a better trade-off between model complexity and
goodness of fit. Developed by Akaike, this method relies on the Maximum Likelihood
Estimation (MLE) approach. The AIC formula is given by the following equation (Sogen et
al., 2023):

AIC = 2k - 2 In(likelihood)

where k denotes the number of estimated parameters, and the likelihood refers to the
maximum likelihood value of the model.

2.6.2. Coefficient of Determination (R?)

The coefficient of determination (R?), commonly referred to as R-squared, assesses the extent
to which a regression model accounts for the variation in the observed data. It offers an
indication of the model's predictive accuracy, with higher values suggesting a closet fit to the
data. The formula for R? is expressed as:

, _ SSR
~ SST

where SSR (Sum of Squares for Regression) refers to the portion of variation explained by
the model, and SST (Total Sum of Squares) represents the overall variation in the data.

2.6.3. Tuberculosis Cases

Spatial statistical methods have become crucial tools in public health and epidemiology,
especially for detecting geographical differences in disease patterns and evaluating spatial risk
factors. Traditional regression models, such as Poisson regression, have been commonly used
to model count data, including disease incidence. However, these models typically assume
spatial stationarity, which may not be applicable in real-world situations where the
relationship between predictors and outcomes changes across different locations
(Fotheringham et al., 2002).

Geographically Weighted Poisson Regression (GWPR) is an advanced version of Poisson
regression that accounts for spatial heterogeneity by allowing the regression coefficients to
vary geographically (Nakaya et al., 2005). This method provides more localized insights into
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how explanatory variables influence outcomes in various areas, making it especially valuable
in public health research, where intervention strategies may need to be tailored to specific
locations.

Recent studies have highlighted the effectiveness of GWPR in analyzing spatial patterns of
different public health outcomes. For example, Lin et al. (2020) used GWPR to examine the
spatial determinants of dengue fever in Taiwan, revealing that the effects of climatic and
demographic factors varied across regions. Likewise, Huang et al. (2021) applied GWPR to
assess COVID-19 transmission risks in urban China, identifying neighborhood level
variations that global models would have missed.

In Indonesia, spatial epidemiology has gained traction, with GWPR being increasingly used
to understand the spread of infectious diseases like tuberculosis (IB), malaria, and dengue.
A study by Sari et al. (2022) used GWPR to analyze TB incidence in Central Java, finding that
population density and access to healthcare facilities had regionally varying effects.

Despite its growing application, GWPR is still underused in health studies at the local level,
particularly in urban areas like Makassar City. This study contributes to the existing literature
by applying GWPR to TB incidence data in Makassar, comparing the performance of models
using both fixed Gaussian and bi-square kernels, and investigating local variations in
associated risk factors. By integrating spatial methods with epidemiological modelling, this
research aims to provide evidence-based insights to help develop targeted TB control
strategies.

3. Research Method and Materials

This research employs a quantitative approach, concentrating on the systematic gathering of
objective data and subsequent numerical analysis. To investigate spatial patterns in
tuberculosis (IB) cases, the study utilizes Geographically Weighted Poisson Regression
(GWPR) as the main analytical technique. The data for this study were obtained from the
Health Office of South Sulawesi Province and the South Sulawesi branch of Statistics
Indonesia (BPS), available through their official website (https://www.bps.go.id).

To develop the GWPR model for TB cases, the analysis was conducted in the following steps:

(a). Descriptive Statistical Analysis: Summarizing key characteristics of the dataset.

(b). Multicollinearity Detection: Assessing correlations between predictor variables using the
Variance Inflation Factor (VIF) test.

(c). Poisson Regression Analysis: Estimating Poisson regression model parameters,
Evaluating parameter significance through both simultaneous and partial tests.
Calculating Akaike Information Criterion (AIC) and R? to assess model performance.

(d). Spatial Heterogeneity Testing: Applying the Breusch-Pagan (BP) test to examine
variations in spatial relationships.

(). GWPR Model Development: Computing Euclidean distances between observation
locations based on latitude and longitude.

(1). Identifying location-specific GWPR estimations.

(2). Determining the bandwidth selection range based on maximum Euclidean
distance per location.

(3). Testing various bandwidth values within the defined range.

(4). Applying fixed Gaussian kernel and fixed bi-square kernel spatial weighting
methods.

(5). Estimating GWPR model parameters using the selected bandwidth.

(6). Identifying the optimal bandwidth for GWPR analysis.

(7). Performing significance tests on GWPR model parameters.

(8). Calculating AIC and R? to evaluate model accuracy.

9). Interpreting the GWPR results for specific locations.
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(f). Model Selection: Evaluating and comparing the Poisson regression model with the
GWPR models (employing fixed Gaussian and fixed bi-square kernels) using the AIC
and R? criteria.

(2). Identitying Key Determinants: Analyzing which predictor variables significantly influence
TB incidence in various regions.

4. Results and Discussion
4.1. Descriptive Analysis

This study relies on secondary data collected from the Makassar City Statistics Agency (BPS)
and the Makassar City Health Office. The dataset includes both response and predictor
variables, which help analyze the distribution of tuberculosis (IB) cases in Makassar City.
The response variable (Y) represents the total number of TB cases recorded in 2022. for
selecting the predictor variables by referring to relevant public health and epidemiological
studies on tuberculosis (IB). The productive age population (X1) is included because
individuals in this age group are not only more active socially and economically but also have
a higher risk of exposure and transmission, making them a key group in TB control efforts.
The availability of healthcare facilities (X2) reflects access to diagnostic services and
treatment, which is crucial for early detection and successful TB management.

The percentage of the population living below the poverty line (X3) is an important
socioeconomic indicator, as poverty is closely linked to poor living conditions,
undernutrition, and limited access to healthcare—factors that significantly contribute to TB
vulnerability. Meanwhile, the number of houscholds practicing clean and healthy living
behaviors (PHBS) (X4) captures the extent of preventive practices at the community level.
These behaviors, such as maintaining ventilation and hygiene, can reduce the risk of TB
transmission in residential settings.

Lastly, population density (X5) is considered due to its role in facilitating the spread of
airborne diseases. Areas with high population density may create conditions that increase the
likelihood of transmission through close and frequent interpersonal contact. The predictor
variables include:

X1: Percentage of the population in the productive age group

X2: Number of available healthcare facilities

X3: Percentage of the population living below the poverty line

X4: Number of households practicing clean and healthy living behaviors (PHBS)

X5: Population density

The following section presents a descriptive analysis of the study data, which consists of one
response variable and five predictor variables.

Table 1: Descriptive Statistics

Variable Min Max Mean Standard Deviation
Y 38.0 484.0 281.7 155.09
X1 1.04 12.35 6.66 4.04
X2 2.00 12.00 6.46 3.33
X3 0.54 6.48 2.94 1.86
X4 1169 32561 12913 9204.38
X5 3245 32645 15285 10144.52
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To incorporate spatial analysis, the study also records the geographic coordinates (latitude and

longitude) of 15 districts in Makassar City, allowing for a more detailed examination of spatial
patterns in TB case distribution.
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Figure 1: Map of Predictor and Response Variable Distribution in Makassar City

Figure 1 highlights five districts with the highest tuberculosis cases: Tamalate, Rappocini,
Tallo, Manggala, and Makassar. Kepulauan Sangkarrang has the lowest percentage of the
productive-age population, while Bontoala and Tallo have the fewest healthcare facilities. The
highest percentage of impoverished populations is found in Tamalate, Tallo, Biringkanaya,
Panakkukang, and Manggala. Additionally, Kepulauan Sangkarrang has the lowest number of
households practicing clean and healthy living behaviors (PHBS).

4.2. Multicollinearity Detection

Prior to developing the Poisson Regression and Geographically Weighted Poisson
Regression (GWPR) models, it is essential to assess the presence of multicollinearity among
the predictor variables.

Table 2: VIF values for each predictor variableorrelation Analysis

Variable VIF Value Multicollinearity Indication
Percentage of Productive-Age Population (Xy) 7.945 No Multicollinearity
Number of Healthcare Facilities (X3) 1.775 No Multicollinearity
Percentage of Impoverished Population (X3) 9.443 No Multicollinearity
Number of Households with PHBS (X4) 9.686 No Multicollinearity
Population Density (Xs) 1.413 No Multicollinearity

Table 2 indicates that the Variance Inflation Factor (VIF) values for all predictor variables
are below 10, suggesting that there is no multicollinearity present. As a result, all variables are
suitable for inclusion in the Poisson Regression modelling process.

4.3. Poisson Regression Model

In Poisson regression modeling, the initial step involves performing a simultaneous
parameter test to assess whether the predictor variables have a collective impact on the
response variable. The hypotheses for this test are outlined as follows:

Ho:B1=B2=B3=B4=B5=0
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Hj: Atleastone Bk # 0, fork = 1,2,3,4,5

Table 3: Simultaneous Hypothesis Testing of Poisson Regression Parameters

Loglike Df x2

p-Value

Patametet Response -121.14 5 1207.5 2.2 x 10716

Based on the results presented in Table 3, the test decision is to reject Ho, as indicated by
the chi-square value ¥> = 1207.5 with a p-value of 2.2 X 107'®. This indicates that at least
one of the predictor variables has a statistically significant effect on the response variable.

Consequently, the next step is to perform a partial test on the Poisson regression model.

Table 4: Partial Hypothesis Testing of Poisson Regression Parameters

V;:z::;:;d Estimator (Bx) Standard Error | Z-statistic p-Value Test Decision
Bo 0.399x10! 8.019 x 1072 49.760 2x10716 Reject Ho
X1(By) 1.816 x 107! 1.503 x 1072 12.083 2x10716 Reject Ho
X2(B,) 1.807 x 1072 6.968 x 1073 2.594 9.49 x 1073 Reject Hp
X3(B3) —4.844 x 1072 2.338 x 1072 -2.071 3.832x 1072 Reject Ho

X4(B,) —2.99 x 107¢ 4933 x 107° -0.607 5.4354 x 107! Fail to Reject H
X5(Bs) 2.225%x107° 2.106 x 107° -2.469 2x107t6 Reject Hy

Based on the calculations in Table 4, 3¢ is significant. The variables Percentage of Productive-
Age Population (X1), Number of Healthcare Facilities (X2), Percentage of Impoverished
Population (X3), and Population Density (X5) each have a significant individual effect on the
number of TB cases in Makassar City. This is indicated by their respective Z-statistic values
and p-values, all of which are below 0.05.

On the other hand, the variable Number of Households Practicing Clean and Healthy Living
Behaviors (PHBS) (X4) does not have a significant individual effect on TB cases in Makassar
City, as its Z-statistic p-value is greater than 0.05.

Thus, the Poisson Regression model for TB cases in Makassar City is formulated as follows:

u=exp (3.990 + 0.816x; + 0.018x; — 0.048x3 + 0.000022x5)

Based on calculations using R software, the Akaike Information Criterion (AIC) for the
Poisson Regression model is 254.29, with an R? value of 90.06%, indicating a high level of
model accuracy.

The next step is to conduct a spatial heterogeneity test to determine whether spatial
heterogeneity exists in the response variable data. This test is performed using the Breusch-

Pagan method.
Table 5: Spatial Heterogeneity Test
Breusch-Pagan p-value Test Decision
10.882 0.04377 5

Based on the calculations in Table 4.6, the test decision is to reject Hg at a 0.05 significance
level. This is indicated by a p-value of 0.04377, which is less than o = 0.05. This result
confirms the presence of spatial heterogeneity in the response vatiable data, meaning that
there are differences in characteristics between regions. Therefore, the data can be
appropriately modeled using Geographically Weighted Poisson Regression (GWPR).

@ G) @ This open access article is distributed under a Creative Commons Attribution (CC-BY-NC) 4.0 903
L ﬁ license.



Meliyana, et.al., ARRUS Journal of Social Sciences and Humanities, Vol. 5, No. 2 (2025)
https://doi.org/10.35877/soshum3812

ISSN: 2776-7930 (Print) / 2807-3010 (Online)

4.4. GWPR Modelling

The initial step in estimating the GWPR model is to determine the locations where the model
will be applied. Makassar City consists of 15 districts, meaning that the Euclidean distances
between districts form a 15 X 15 matrix. The second step is to determine the optimal
bandwidth for each observation location using the Cross-Validation (CV) criterion, ensuring
appropriate spatial coverage between regions. In this process, two weighting criteria are
applied: the fixed Gaussian kernel and the fixed bi-squate kernel.

Table 6: Bandwidth values for the fixed gaussian kernel and fixed bisquare kernel at each location.

Bandwidth
Location
fixed gaussian kernel fixed bisquate kernel
Mamajang 0.038183 0.030632
Manggala 0.075556 0.068678
Mariso 0.036245 0.031777
Sangkarrang 0.347720 0.343458
Rappocini 0.044063 0.042230
Tamalate 0.062677 0.052403
Makassar 0.029003 0.024790
Ujung Pandang 0.035822 0.024577
Panakkukang 0.043282 0.041501
Bontoala 0.033325 0.025937
Wajo 0.037588 0.032674
Ujung Tanah 0.045141 0.032576
Tallo 0.038920 0.034597
Tamalanrea 0.064466 0.062882
Biringkanaya 0.100553 0.098703

The bandwidth value differs at each observation location, indicating that each observation
area is associated with a unique bandwidth.

4.4.1. Estimation of GWPR Model Parameters

The GWPR model with fixed bi-square kernel weighting demonstrates the relationship
between the number of TB cases across 15 districts in Makassar City and the predictor
variables. The estimated models for Location 1 (Mamajang District), Location 2 (Manggala
District), and Location 3 (Mariso District) are presented as follows:

i (uyvy) = exp(268.32 — 1037.2X,+ 562.03X5 + 0.553X, + 0.0128Xx)
i (uyv,) = exp(-133.63+0.006X5)
[ (usvs) = exp(524.92— 1030.62X; — 28.14X, + 443.43X; + 0.43X, + 0.004X5)

The GWPR model with fixed Gaussian kernel weighting illustrates the relationship between
the number of TB cases across 15 districts in Makassar City and the predictor variables. The
estimated models for Location 2 (Mangala District), Location 3 (Mariso District), and
Location 15 (Biringkanaya District) are presented as follows:

i (uyv,) = exp(—44.56 + 0.003X5)
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i (uzv3) = exp(—31.41 + 0.002X5)
i (uy5v15) = exp(—35.69 + 43.99X;)

A comparison was made between the Poisson regression model and the GWPR models
utilizing Fixed Bi-square Kernel and Fixed Gaussian Kernel weighting to identify the most
appropriate model for analyzing TB cases in Makassar City in 2022.

4.4.2. The Best Model Selection

The criteria for model selection were based on Akaike's Information Criterion (AIC) and the
Coefficient of Determination (R?), with a lower AIC value and a higher R? value indicating a
model that fits the data better. The outcomes of the model selection process are shown in

Table 7.

Table 7: The best model selection

Model Prediction AIC R?
Poisson Regression 254.29 90.06%
GWPR Fixed Bi-square Kernel 97.69 99.93%
GWPR Fixed Gaussian Kernel 153.24 95.99%

According to Table 7, the optimal model for forecasting the number of TB cases in Makassar
City is the GWPR model with Fixed Bi-square Kernel weighting. This is evidenced by the
model's lowest AIC value of 97.69 and the highest Coefficient of Determination (R% of
99.93%. Therefore, it can be concluded that the GWPR model with Fixed Bi-square Kernel
weighting is the most appropriate model for analyzing TB cases in Makassar City.

4.5. Interpretation of the Best Model

The GWPR model with Fixed Bi-square Kernel weighting can be divided into eight
categories, determined by the predictor variables that significantly impact the number of TB
cases. These categories are outlined in Table 8 below:

Table 8: Classification of Predictor Variables Significantly Influencing TB Cases

Location Significant Variable
Bontoala, Tamalanrea, Biringkanaya X1
Manggala, ujung Pandang (X5)
Sangkarrang, Wajo (X1) and (X4)
Panakkukang (X2) and (X5)
Tallo (X3) and (X5)
Rappocini, Ujung Tanah (X1), (X2) and (X3)
Mamajang, Tammalate, Makassar (X1), (X3), (X4) and (X5)
Mariso (X1), (X2), (X3), (X4) and (X5)

According to Table 8, the classification of significant variables using the GWPR method with
Fixed Bi-square Kernel weighting indicates that all predictor variables significantly affect the
response variable.

The significance of each variable is assessed by comparing the t-statistic at each observation
point with the critical t-value at a 0.05 significance level for 14 degrees of freedom, which is
1.77. The decision rule is to reject Hg if t-statistic > t-value (1.77) at a given observation
location. As an example, the t-statistic values for each observation location in Mariso District
are presented in Table 9 below.
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Table 9: t-Statistic Values for Partial Testing of GWPR Fixed Bisquare Kernel Model Parameters

Variable t-Statistic
X1 5.741
X2 3.934
X3 5.655
X4 5.703
X5 3.318

The map in Figure 2 displays the classification of the GWPR model with fixed bi-square
kernel weighting, highlighting the predictor variables that have a significant impact on the
number of TB cases across 15 districts of Makassar City.

Map Legend

I )
B (xs)
B x1) dan (x4)
(X2) dan (X5)
B (x3) dan (x5)
B 1), (X2), dan (X3)
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Figure 2: The classification of the GWPR model with fixed bi-square kernel weighting

Based on Figure 2, the map of Makassar City highlights different regions with distinct factors
influencing TB cases: Purple-colored areas represent districts Bontoala, Tamalanrea, and
Biringkanaya, where the percentage of the productive-age population (X1) is the primary
influencing factor. Orange-colored areas indicate that in Manggala and Ujung Pandang
districts, population density (X5) is the significant factor affecting TB cases. Blue-colored
areas show that in Rappocini and Ujung Tanah districts, the influencing factors include the
petcentage of the productive-age population (X1), number of healthcare facilities (X2), and
percentage of the impoverished population (X3). Similar classifications apply to other district
groups as represented on the map.

Thus, the GWPR model with Fixed Bisquare Kernel weighting varies across districts. For
example, in Mariso District, the estimated model is as follows:

A(usvs) = exp(524,92 — 1030,62X1 — 28,14X2 + 443,43X3 + 0,43X4 + 0,0047X5)

Based on this model, the following interpretations can be made: A one-unit increase in the
percentage of the productive-age population (X1) is estimated to decrease the number of TB
cases by a factor of exp (-1030.62) = 2.55 X 107, A one-unit increase in the number of
healthcare facilities (X2) is estimated to decrease TB cases by a factor of exp (-28.14) = 6.01
X 1072, A one-unit increase in the percentage of the impoverished population (X3) is
estimated to increase TB cases by a factor of exp (443.43) = 3.79 x 10'°. A one-unit increase
in the number of households practicing PHBS (X4) is estimated to increase TB cases by a
factor of exp (0.43) = 1.537. A one-unit increase in population density (X5) is estimated to
increase TB cases by a factor of exp (0.0047) = 1.0047. However, the result for PHBS
households (X4) appears unrealistic, as an increase in PHBS households should theoretically
reduce TB cases Several contextual factors may help explain the unexpected results regarding
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PHBS (Clean and Healthy Living Behavior). Although PHBS programs are widely promoted
across Indonesia, the reported number of households categorized as compliant may not
accurately reflect actual behavioral practices. This discrepancy may stem from the reliance on
self-reported data or limited observational verification, potentially introducing bias and
overestimating adherence levels (Ministry of Health RI, 2021).

Furthermore, environmental conditions commonly found in densely populated urban areas,
such as household crowding, inadequate ventilation, and insufficient natural lighting, can limit
the effectiveness of individual healthy practices in preventing the airborne spread of
tuberculosis. Thus, even with proper PHBS implementation at the household level,
unfavorable living conditions may still facilitate TB transmission (Lénnroth et al., 2009).
Another plausible explanation is that regions reporting higher PHBS rates may also possess
stronger public health infrastructure and surveillance systems, resulting in increased case
detection rather than a true elevation in TB incidence (Sharma & Mohan, 2020).

These considerations suggest that while PHBS remains a valuable public health initiative, its
measurement alone may not sufficiently capture the multifaceted interaction between
individual behavior, environmental exposure, and healthcare system capacity in influencing
TB transmission risk.

5. Conclusion
Based on the conducted tests, the following conclusions can be drawn:

The models produced using GWPR with Fixed Bi-square Kernel weighting and GWPR with
Fixed Gaussian Kernel weighting exhibit spatial variation across different districts in
Makassar City. For instance, the GWPR model with Fixed Bi-square Kernel weighting for
the Mariso District is represented as follows:

A(usv3) = exp(524.92 — 1030.62X1 — 28.14X2 + 443.43X3 + 0.43X4 + 0.0047X5)

The significant factors influencing TB cases in Mariso District, Makassar City, in 2022 include
the percentage of the productive-age population (X1), number of healthcare facilities (X2),
petcentage of the impoverished population (X3), number of households practicing PHBS
(X4), and population density (X5).
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