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Abstract: This study aims to model the spatial distribution of tuberculosis (TB) 

cases in Makassar City in 2022 using the Geographically Weighted Poisson 

Regression (GWPR) approach. This method extends Poisson regression by 

incorporating spatial heterogeneity, weighting each location based on its 

geographical proximity. Two types of kernel weighting functions, fixed 

Gaussian kernel and fixed bi-square kernel, were used to determine the most 

effective model for identifying key factors influencing TB case numbers. The 

parameter estimation results indicate that the GWPR model with fixed bi-

square kernel performs better than the global Poisson regression model, 

achieving an Akaike’s Information Criterion (AIC) value of 97.69 and a 

coefficient of determination (R²) of 99.93%. The findings reveal that the 

relationship between predictor variables and TB cases varies across districts, 

with the percentage of the productive-age population and population density 

emerging as dominant factors. These results highlight the advantages of the 

GWPR approach in capturing spatial dynamics more effectively than 

conventional regression models, making it a powerful analytical tool for 

designing targeted, region-specific public health interventions. 

Keywords: Geographically Weighted Poisson Regression, Fixed Gaussian Kernel, Fixed Bi-
square Kernel, Spatial Analysis, Tuberculosis. 
 
 
 

1. Introduction  

Regression analysis is a statistical method used to examine the relationship between one or 
more independent variables and a dependent variable (Astriawati, 2016). The Ordinary Least 
Squares (OLS) method is commonly used in regression analysis, but it has limitations as it 
does not account for the spatial structure of data. To address this issue, spatial regression was 
introduced, incorporating spatial aspects to capture relationships between neighboring 
observational units (Sejati et al., 2022). However, spatial regression still struggles to handle 
local variations (Nurmasari, 2016). 

Geographically Weighted Regression (GWR) provides a more adaptable method by assigning 
unique weights to each data point according to its spatial proximity to the location under 
analysis (Widyaningsih & Fitrianingrum, 2022). This method incorporates the idea that the 
impact of independent variables can differ across geographic locations, thereby capturing 
dynamic spatial patterns. Building on this concept, Geographically Weighted Poisson 
Regression (GWPR) extends the principles of GWR to model dependent variables that follow 
a Poisson distribution, which is especially beneficial for modeling event frequencies in 
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specific regions (Arini & Nanih, 2022). GWPR is particularly effective in addressing intricate 
spatial variations in data distributions (Ananda et al., 2023). 

Conventional Poisson regression models do not account for spatial variability, despite the 
fact that spatial heterogeneity often exists, where a predictor’s influence may differ from one 
location to another. Geographically Weighted Poisson Regression (GWPR) addresses this 
limitation by incorporating spatial context through a kernel-based weighting mechanism, 
either fixed or adaptive (Tizona et al., 2017), enabling the model to better capture location-
specific effects in Poisson-distributed outcome variables. 

Tuberculosis (TB) remains one of the leading infectious diseases globally, with mortality and 
case rates continuing to rise (Supriyanti, 2022). In Makassar City, the burden of TB is 
particularly severe, with 5,444 cases reported out of an estimated 14,000 in 2022. Applying 
Geographically Weighted Poisson Regression (GWPR) to TB data is essential, as it 
accommodates complex spatial heterogeneity and allows for the identification of localized 
transmission patterns. This spatially sensitive approach facilitates the development of more 
targeted public health strategies. Moreover, GWPR improves the precision of regression 
modeling by detecting high-risk clusters, thereby supporting more effective disease control 
efforts (Tuasikal, 2018; Septiani, 2021; Helmy et al., 2022). 

This study focuses on the Geographically Weighted Poisson Regression (GWPR) model 
using fixed Gaussian kernel and fixed bisquare kernel weighting, applied to TB case data in 
Makassar City. 

2. Literature Review 

2.1. Poisson Distribution 

The Poisson distribution is a probability model used to describe events that occur with a low 
probability, where the events are influenced by a specific time frame or geographical region, 
and the outcomes are represented by discrete variables (Otaya, 2016). It is one of the simplest 
models for analyzing count data, which consists of non-negative integer values (Budiharti, 
2021). 

The probability mass function (PMF) of the Poisson distribution is expressed as follows 
(Walpole, 1995): 

𝑝(𝑦; 𝜇) =
𝑒−𝜇𝜇𝑦

𝑦!
     (𝑦 = 0, 1, 2, … . ) 

Where μ denotes the expected number of occurrences in a given time period or area, and y 
represents the observed number of events during that period or in that region. 

2.2. Poisson Regression 

The Poisson regression model is a type of regression analysis based on the Poisson 
distribution, often utilized for examining data where the response variable is discrete. It is 
classified as a nonlinear regression model (Kusuma et al., 2013). A defining feature of Poisson 
regression is equidispersion, which indicates that the mean and variance are equal. The 
relationship between the response variable (Y) and the predictor variable (X) is represented 
as follows (Esra et al., 2023): 

𝐸 (((𝑌𝑖|𝑋𝑖) =  𝛽0 + 𝛽1𝑥1 +  𝛽2𝑥2 + ⋯ +  𝛽𝑛𝑥𝑛 + 𝜀1  

Thus, the Poisson model can be written as follows: 

𝐸 (((𝑌𝑖|𝑋𝑖) =  𝜇𝑖 = exp( 𝑥𝑖
𝑇𝛽) , 𝑖 = 1,2, … , 𝑛 

where β represents the unknown parameter that needs to be estimated, and xᵢ is the 
independent variable. 
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2.2.1. Parameter Estimation in Poisson Regression 

The Maximum Likelihood Estimation (MLE) method is commonly used to estimate the 
parameters of the Poisson regression model (Fauziah, 2021). The log-likelihood function, 
maximized using the MLE method, is given as follows: 

𝜕 ln 𝐿 (𝛽)

𝜕 𝛽𝑇 =  ∑ (−𝑥𝑖 exp( 𝑥𝑖
𝑇𝛽) +  𝑦𝑖𝑥𝑖

𝑛

𝑖=1
 

2.2.2. Partial Test 

The parameters estimated in the model may not always exhibit a substantial effect. Hence, it 
is necessary to conduct a partial or individual test to evaluate the significance of each 
parameter. The hypotheses for this test are outlined as follows: 

H₀: 𝛽ₖ = 0 (The k-th variable has no significant effect) 

H₁: 𝛽ₖ ≠ 0 (The k-th variable has a significant effect) 

The test statistic is given as: 

                  𝑧 =  
𝛽̂𝑘

𝑠𝑒 (𝛽̂𝑘)
 ; 

2.2.3. Spatial Heterogeneity Test 

Spatial heterogeneity testing is conducted to assess whether the data of the response variable 
show point-based spatial heterogeneity. This can be evaluated using the Breusch-Pagan (BP) 
test. 

2.3.  Geographically Weighted Regression (GWR) 

Geographically Weighted Regression (GWR) is an advanced method used to model spatial 
heterogeneity. Spatial heterogeneity refers to the variations or differences in characteristics 
across various geographic areas (Soraya et al., 2016). The spatial heterogeneity model in GWR 
can be represented as follows (Wang et al., 2014): 

𝑦𝑖 = 𝛽0 (𝑢𝑖 , 𝑣𝑖 )+ ∑  𝑘
𝑗=1  𝛽𝑗 (𝑢𝑖 , 𝑣𝑖 ) 𝑥𝑖𝑗 + 𝜀𝑖,  (𝑖 = 1, 2, … 𝑛) 

In this model, 𝑦𝑖  represents the observed value of the response variable at observation i, 

while 𝑥𝑖𝑗 refers to the observed value of the predictor variable j at observation i. The term 

𝛽₀(𝑢𝑖, 𝑣𝑖) denotes the intercept of the regression model, and 𝛽j(𝑢𝑖, 𝑣𝑖) indicates the 

regression coefficient for j = 0, 1, 2, ..., k. Furthermore, 𝑢𝑖 and 𝑣𝑖 represent the spatial 

coordinates of observation i, and 𝜀𝑖  is the error term associated with observation i. 

2.4. Geographically Weighted Poisson Regression (GWPR)  

Geographically Weighted Poisson Regression (GWPR) is an extension of the Poisson 
regression model that incorporates spatial variations within the data. Unlike traditional global 
Poisson regression, where the parameter estimates remain constant across all locations, 
GWPR enables these estimates to vary according to geographic position (Millah, 2015). This 
characteristic makes GWPR a more adaptable and region-specific method, allowing it to 
capture spatial heterogeneity with greater precision (Qomariyah et al., 2013). 

For a given location i, with coordinates (ui,vi), the GWPR model is expressed as: 

𝜇𝑖 (𝑢𝑖 , 𝑣𝑖)= exp( 𝑋𝑖
𝑇𝛽̂( 𝑢𝑖 , 𝑣𝑖)), 𝑖 = 1,2, … , 𝑛 

With 

𝛽̂ = (ui,vi) = [𝛽̂(𝑢𝑖,𝑣𝑖)𝛽1(𝑢𝑖,𝑣𝑖) 𝛽2(𝑢𝑖,𝑣𝑖) … 𝛽𝑝(𝑢𝑖,𝑣𝑖)]
𝑇
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2.5. Geographically Weighted Poisson Regression (GWPR)  

In GWPR, the kernel weighting function incorporates a parameter known as bandwidth, 
which can be interpreted as the radius (b) of a circle that determines the influence of nearby 
data points. To find the optimal bandwidth, one widely applied approach is Cross-Validation 
(CV), which is computed using the following formula (Sogen et al., 2023): 

𝐶𝑉 =  ∑ [𝑦𝑖 − 𝑦̂≠𝑖 (𝒃)]2
𝑛

𝑖=1
 

This research employs two different types of spatial weighting functions: the fixed Gaussian 
kernel and the fixed bi-square kernel. 

● Fixed gaussian kernel:  𝑤𝑖𝑗(𝑢𝑖,𝑣𝑖) = exp (− (
𝑑𝑖𝑗

𝑏
)

2

) 

● Fixed bi-square kernel : 𝑤𝑖𝑗 (𝑢𝑖,𝑣𝑖) =  {
(1 − (

𝑑𝑖𝑗

𝑏
)

2

)
2 

,   𝑢𝑛𝑡𝑢𝑘 𝑑𝑖𝑗 ≤ 𝑏

0                         , 𝑢𝑛𝑡𝑢𝑘 𝑑𝑖𝑗 > 𝑏
 

where b is a non-negative parameter referred to as the bandwidth, bᵢ represents the 

bandwidth at location i, and dᵢⱼ denotes the Euclidean distance between locations i and j. 

2.6. Selecting the Best Model 

2.6.1. Akaike Information Criterion (AIC) 

In spatial modeling, the Akaike Information Criterion (AIC) is a commonly used tool for 
selecting the most appropriate regression model. The optimal model is identified by the 
lowest AIC value, as a lower AIC signifies a better trade-off between model complexity and 
goodness of fit. Developed by Akaike, this method relies on the Maximum Likelihood 
Estimation (MLE) approach. The AIC formula is given by the following equation (Sogen et 
al., 2023): 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) 

where k denotes the number of estimated parameters, and the likelihood refers to the 
maximum likelihood value of the model. 

2.6.2. Coefficient of Determination (R²) 

The coefficient of determination (R²), commonly referred to as R-squared, assesses the extent 
to which a regression model accounts for the variation in the observed data. It offers an 
indication of the model's predictive accuracy, with higher values suggesting a closer fit to the 
data. The formula for R² is expressed as: 

𝑅2 =  
𝑆𝑆𝑅

𝑆𝑆𝑇
 

where SSR (Sum of Squares for Regression) refers to the portion of variation explained by 
the model, and SST (Total Sum of Squares) represents the overall variation in the data. 

2.6.3. Tuberculosis Cases  

Spatial statistical methods have become crucial tools in public health and epidemiology, 
especially for detecting geographical differences in disease patterns and evaluating spatial risk 
factors. Traditional regression models, such as Poisson regression, have been commonly used 
to model count data, including disease incidence. However, these models typically assume 
spatial stationarity, which may not be applicable in real-world situations where the 
relationship between predictors and outcomes changes across different locations 
(Fotheringham et al., 2002). 

Geographically Weighted Poisson Regression (GWPR) is an advanced version of Poisson 
regression that accounts for spatial heterogeneity by allowing the regression coefficients to 
vary geographically (Nakaya et al., 2005). This method provides more localized insights into 
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how explanatory variables influence outcomes in various areas, making it especially valuable 
in public health research, where intervention strategies may need to be tailored to specific 
locations. 

Recent studies have highlighted the effectiveness of GWPR in analyzing spatial patterns of 
different public health outcomes. For example, Lin et al. (2020) used GWPR to examine the 
spatial determinants of dengue fever in Taiwan, revealing that the effects of climatic and 
demographic factors varied across regions. Likewise, Huang et al. (2021) applied GWPR to 
assess COVID-19 transmission risks in urban China, identifying neighborhood level 
variations that global models would have missed. 

In Indonesia, spatial epidemiology has gained traction, with GWPR being increasingly used 
to understand the spread of infectious diseases like tuberculosis (TB), malaria, and dengue. 
A study by Sari et al. (2022) used GWPR to analyze TB incidence in Central Java, finding that 
population density and access to healthcare facilities had regionally varying effects. 

Despite its growing application, GWPR is still underused in health studies at the local level, 
particularly in urban areas like Makassar City. This study contributes to the existing literature 
by applying GWPR to TB incidence data in Makassar, comparing the performance of models 
using both fixed Gaussian and bi-square kernels, and investigating local variations in 
associated risk factors. By integrating spatial methods with epidemiological modelling, this 
research aims to provide evidence-based insights to help develop targeted TB control 
strategies. 

3. Research Method and Materials 

This research employs a quantitative approach, concentrating on the systematic gathering of 
objective data and subsequent numerical analysis. To investigate spatial patterns in 
tuberculosis (TB) cases, the study utilizes Geographically Weighted Poisson Regression 
(GWPR) as the main analytical technique. The data for this study were obtained from the 
Health Office of South Sulawesi Province and the South Sulawesi branch of Statistics 
Indonesia (BPS), available through their official website (https://www.bps.go.id). 

To develop the GWPR model for TB cases, the analysis was conducted in the following steps: 

(a). Descriptive Statistical Analysis: Summarizing key characteristics of the dataset. 
(b). Multicollinearity Detection: Assessing correlations between predictor variables using the 

Variance Inflation Factor (VIF) test. 
(c). Poisson Regression Analysis: Estimating Poisson regression model parameters, 

Evaluating parameter significance through both simultaneous and partial tests. 
Calculating Akaike Information Criterion (AIC) and R² to assess model performance. 

(d). Spatial Heterogeneity Testing: Applying the Breusch-Pagan (BP) test to examine 
variations in spatial relationships. 

(e). GWPR Model Development: Computing Euclidean distances between observation 
locations based on latitude and longitude. 

(1). Identifying location-specific GWPR estimations. 
(2). Determining the bandwidth selection range based on maximum Euclidean 

distance per location. 
(3). Testing various bandwidth values within the defined range. 
(4). Applying fixed Gaussian kernel and fixed bi-square kernel spatial weighting 

methods. 
(5). Estimating GWPR model parameters using the selected bandwidth. 
(6). Identifying the optimal bandwidth for GWPR analysis. 
(7). Performing significance tests on GWPR model parameters. 
(8). Calculating AIC and R² to evaluate model accuracy. 
(9). Interpreting the GWPR results for specific locations. 

https://www.bps.go.id/
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(f). Model Selection: Evaluating and comparing the Poisson regression model with the 
GWPR models (employing fixed Gaussian and fixed bi-square kernels) using the AIC 
and R² criteria. 

(g). Identifying Key Determinants: Analyzing which predictor variables significantly influence 
TB incidence in various regions. 

4. Results and Discussion  

4.1. Descriptive Analysis 

This study relies on secondary data collected from the Makassar City Statistics Agency (BPS) 
and the Makassar City Health Office. The dataset includes both response and predictor 
variables, which help analyze the distribution of tuberculosis (TB) cases in Makassar City. 
The response variable (Y) represents the total number of TB cases recorded in 2022. for 
selecting the predictor variables by referring to relevant public health and epidemiological 
studies on tuberculosis (TB). The productive age population (X1) is included because 
individuals in this age group are not only more active socially and economically but also have 
a higher risk of exposure and transmission, making them a key group in TB control efforts. 
The availability of healthcare facilities (X2) reflects access to diagnostic services and 
treatment, which is crucial for early detection and successful TB management. 

The percentage of the population living below the poverty line (X3) is an important 
socioeconomic indicator, as poverty is closely linked to poor living conditions, 
undernutrition, and limited access to healthcare—factors that significantly contribute to TB 
vulnerability. Meanwhile, the number of households practicing clean and healthy living 
behaviors (PHBS) (X4) captures the extent of preventive practices at the community level. 
These behaviors, such as maintaining ventilation and hygiene, can reduce the risk of TB 
transmission in residential settings. 

Lastly, population density (X5) is considered due to its role in facilitating the spread of 
airborne diseases. Areas with high population density may create conditions that increase the 
likelihood of transmission through close and frequent interpersonal contact. The predictor 
variables include: 
X1: Percentage of the population in the productive age group 
X2: Number of available healthcare facilities 
X3: Percentage of the population living below the poverty line 
X4: Number of households practicing clean and healthy living behaviors (PHBS) 
X5: Population density 
The following section presents a descriptive analysis of the study data, which consists of one 
response variable and five predictor variables. 

Table 1: Descriptive Statistics 

Variable Min Max Mean Standard Deviation 

Y 38.0 484.0 281.7 155.09 

X1 1.04 12.35 6.66 4.04 

X2 2.00 12.00 6.46 3.33 

X3 0.54 6.48 2.94 1.86 

X4 1169 32561 12913 9204.38 

X5 3245 32645 15285 10144.52 
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To incorporate spatial analysis, the study also records the geographic coordinates (latitude and 
longitude) of 15 districts in Makassar City, allowing for a more detailed examination of spatial 
patterns in TB case distribution. 

 

Y  X1 X2 

   

X3 X4 X5 

 
 

 

Figure 1: Map of Predictor and Response Variable Distribution in Makassar City 

Figure 1 highlights five districts with the highest tuberculosis cases: Tamalate, Rappocini, 
Tallo, Manggala, and Makassar. Kepulauan Sangkarrang has the lowest percentage of the 
productive-age population, while Bontoala and Tallo have the fewest healthcare facilities. The 
highest percentage of impoverished populations is found in Tamalate, Tallo, Biringkanaya, 
Panakkukang, and Manggala. Additionally, Kepulauan Sangkarrang has the lowest number of 
households practicing clean and healthy living behaviors (PHBS). 

4.2. Multicollinearity Detection 

Prior to developing the Poisson Regression and Geographically Weighted Poisson 
Regression (GWPR) models, it is essential to assess the presence of multicollinearity among 
the predictor variables.  

Table 2: VIF values for each predictor variableorrelation Analysis  

Variable VIF Value Multicollinearity Indication 

Percentage of Productive-Age Population (X₁) 7.945 No Multicollinearity 

Number of Healthcare Facilities (X₂) 1.775 No Multicollinearity 

Percentage of Impoverished Population (X₃) 9.443 No Multicollinearity 

Number of Households with PHBS (X₄) 9.686 No Multicollinearity 

Population Density (X₅) 1.413 No Multicollinearity 

Table 2 indicates that the Variance Inflation Factor (VIF) values for all predictor variables 
are below 10, suggesting that there is no multicollinearity present. As a result, all variables are 
suitable for inclusion in the Poisson Regression modelling process. 

4.3. Poisson Regression Model 

In Poisson regression modeling, the initial step involves performing a simultaneous 
parameter test to assess whether the predictor variables have a collective impact on the 
response variable. The hypotheses for this test are outlined as follows: 

H₀: β₁ = β₂ = β₃ = β₄ = β₅ = 0  

TC Cases Facilities Population 

Poor Density 
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H₁: At least one βₖ ≠ 0, for k = 1, 2, 3, 4, 5 

Table 3: Simultaneous Hypothesis Testing of Poisson Regression Parameters 

 Loglike Df 𝒙𝟐 p-Value 

Parameter Response -121.14 5 1207.5 2.2 × 10−16 

Based on the results presented in Table 3, the test decision is to reject H₀, as indicated by 

the chi-square value χ² = 1207.5 with a p-value of 2.2 × 10⁻¹⁶. This indicates that at least 
one of the predictor variables has a statistically significant effect on the response variable. 
Consequently, the next step is to perform a partial test on the Poisson regression model. 

Table 4: Partial Hypothesis Testing of Poisson Regression Parameters 

Variable and 

Parameter 
Estimator (βₖ)̂ Standard Error Z-statistic p-Value Test Decision 

𝛽0 0.399x101 8.019 × 10−2 49.760 2x10−16 Reject H₀ 

X1(𝛽1) 1.816 × 10−1 1.503 × 10−2 12.083 2x10−16 Reject H₀ 

𝑋2(𝛽2) 1.807 × 10−2 6.968 × 10−3 2.594 9.49 × 10−3 Reject H₀ 

𝑋3(𝛽3) −4.844 × 10−2 2.338 × 10−2 -2.071 3.832 × 10−2 Reject H₀ 

𝑋4(𝛽4) −2.99 × 10−6 4.933 × 10−6 -0.607 5.4354 × 10−1 Fail to Reject H₀ 

𝑋5(𝛽5) 2.225 × 10−5 2.106 × 10−6 -2.469 2x10−16 Reject H₀ 

Based on the calculations in Table 4, β₀ is significant. The variables Percentage of Productive-

Age Population (X1), Number of Healthcare Facilities (X2), Percentage of Impoverished 
Population (X3), and Population Density (X5) each have a significant individual effect on the 
number of TB cases in Makassar City. This is indicated by their respective Z-statistic values 
and p-values, all of which are below 0.05. 

On the other hand, the variable Number of Households Practicing Clean and Healthy Living 
Behaviors (PHBS) (X4) does not have a significant individual effect on TB cases in Makassar 
City, as its Z-statistic p-value is greater than 0.05. 

Thus, the Poisson Regression model for TB cases in Makassar City is formulated as follows: 

𝜇 = exp (3.990 +  0.816𝑥1 + 0.018𝑥2 −  0.048𝑥3 + 0.000022𝑥5) 

Based on calculations using R software, the Akaike Information Criterion (AIC) for the 
Poisson Regression model is 254.29, with an R² value of 90.06%, indicating a high level of 
model accuracy. 

The next step is to conduct a spatial heterogeneity test to determine whether spatial 
heterogeneity exists in the response variable data. This test is performed using the Breusch-
Pagan method. 

Table 5: Spatial Heterogeneity Test 

Breusch-Pagan p-value Test Decision 

10.882 0.04377 5 

Based on the calculations in Table 4.6, the test decision is to reject H₀ at a 0.05 significance 
level. This is indicated by a p-value of 0.04377, which is less than α = 0.05. This result 
confirms the presence of spatial heterogeneity in the response variable data, meaning that 
there are differences in characteristics between regions. Therefore, the data can be 
appropriately modeled using Geographically Weighted Poisson Regression (GWPR). 
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4.4. GWPR Modelling 

The initial step in estimating the GWPR model is to determine the locations where the model 
will be applied. Makassar City consists of 15 districts, meaning that the Euclidean distances 
between districts form a 15 × 15 matrix. The second step is to determine the optimal 
bandwidth for each observation location using the Cross-Validation (CV) criterion, ensuring 
appropriate spatial coverage between regions. In this process, two weighting criteria are 
applied: the fixed Gaussian kernel and the fixed bi-square kernel. 

Table 6: Bandwidth values for the fixed gaussian kernel and fixed bisquare kernel at each location. 

Location 
Bandwidth 

fixed gaussian kernel fixed bisquare kernel 

Mamajang 0.038183 0.030632 

Manggala 0.075556 0.068678 

Mariso 0.036245 0.031777 

Sangkarrang 0.347720 0.343458 

Rappocini 0.044063 0.042230 

Tamalate 0.062677 0.052403 

Makassar 0.029003 0.024790 

Ujung Pandang 0.035822 0.024577 

Panakkukang 0.043282 0.041501 

Bontoala 0.033325 0.025937 

Wajo 0.037588 0.032674 

Ujung Tanah 0.045141 0.032576 

Tallo 0.038920 0.034597 

Tamalanrea 0.064466 0.062882 

Biringkanaya 0.100553 0.098703 

The bandwidth value differs at each observation location, indicating that each observation 
area is associated with a unique bandwidth. 

4.4.1. Estimation of GWPR Model Parameters  

The GWPR model with fixed bi-square kernel weighting demonstrates the relationship 
between the number of TB cases across 15 districts in Makassar City and the predictor 
variables. The estimated models for Location 1 (Mamajang District), Location 2 (Manggala 
District), and Location 3 (Mariso District) are presented as follows: 

𝜇̂ (𝑢1𝑣1) =  𝑒𝑥𝑝(268.32 − 1037.2X1+ 562.03X3 + 0.553𝑋4  + 0.0128𝑋5)  

𝜇̂ (𝑢2𝑣2) = 𝑒𝑥𝑝(-133.63+0.006𝑋5) 

𝜇̂ (𝑢3𝑣3) =  𝑒𝑥𝑝(524.92− 1030.62X1 − 28.14𝑋2  + 443.43𝑋3 + 0.43𝑋4 + 0.004𝑋5)  

The GWPR model with fixed Gaussian kernel weighting illustrates the relationship between 
the number of TB cases across 15 districts in Makassar City and the predictor variables. The 
estimated models for Location 2 (Mangala District), Location 3 (Mariso District), and 
Location 15 (Biringkanaya District) are presented as follows: 

𝜇̂ (𝑢2𝑣2) = 𝑒𝑥𝑝(−44.56 + 0.003X5)  
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𝜇̂ (𝑢3𝑣3) = 𝑒𝑥𝑝(−31.41 + 0.002𝑋5)  

𝜇̂ (𝑢15𝑣15) = 𝑒𝑥𝑝(−35.69 + 43.99𝑋1)  

A comparison was made between the Poisson regression model and the GWPR models 
utilizing Fixed Bi-square Kernel and Fixed Gaussian Kernel weighting to identify the most 
appropriate model for analyzing TB cases in Makassar City in 2022. 

4.4.2. The Best Model Selection 

The criteria for model selection were based on Akaike's Information Criterion (AIC) and the 
Coefficient of Determination (R²), with a lower AIC value and a higher R² value indicating a 
model that fits the data better. The outcomes of the model selection process are shown in 
Table 7. 

Table 7: The best model selection 

Model Prediction AIC R² 

Poisson Regression 254.29 90.06% 

GWPR Fixed Bi-square Kernel 97.69 99.93% 

GWPR Fixed Gaussian Kernel 153.24 95.99% 

According to Table 7, the optimal model for forecasting the number of TB cases in Makassar 
City is the GWPR model with Fixed Bi-square Kernel weighting. This is evidenced by the 
model's lowest AIC value of 97.69 and the highest Coefficient of Determination (R²) of 
99.93%. Therefore, it can be concluded that the GWPR model with Fixed Bi-square Kernel 
weighting is the most appropriate model for analyzing TB cases in Makassar City. 

4.5. Interpretation of the Best Model 

The GWPR model with Fixed Bi-square Kernel weighting can be divided into eight 
categories, determined by the predictor variables that significantly impact the number of TB 
cases. These categories are outlined in Table 8 below: 

Table 8: Classification of Predictor Variables Significantly Influencing TB Cases 

Location Significant Variable 

Bontoala, Tamalanrea, Biringkanaya (X1) 

Manggala, ujung Pandang  (X5) 

Sangkarrang, Wajo (X1) and (X4) 

Panakkukang (X2) and (X5) 

Tallo (X3) and (X5) 

Rappocini, Ujung Tanah (X1), (X2) and (X3) 

Mamajang, Tammalate, Makassar (X1), (X3), (X4) and (X5) 

Mariso (X1), (X2), (X3), (X4) and (X5) 

According to Table 8, the classification of significant variables using the GWPR method with 
Fixed Bi-square Kernel weighting indicates that all predictor variables significantly affect the 
response variable. 

The significance of each variable is assessed by comparing the t-statistic at each observation 
point with the critical t-value at a 0.05 significance level for 14 degrees of freedom, which is 

1.77. The decision rule is to reject H₀ if t-statistic > t-value (1.77) at a given observation 
location. As an example, the t-statistic values for each observation location in Mariso District 
are presented in Table 9 below. 
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Table 9: t-Statistic Values for Partial Testing of GWPR Fixed Bisquare Kernel Model Parameters 

Variable t-Statistic  

X1 5.741 

X2  3.934 

X3 5.655 

X4 5.703 

X5 3.318 

The map in Figure 2 displays the classification of the GWPR model with fixed bi-square 
kernel weighting, highlighting the predictor variables that have a significant impact on the 
number of TB cases across 15 districts of Makassar City.  

 

Figure 2: The classification of the GWPR model with fixed bi-square kernel weighting 

Based on Figure 2, the map of Makassar City highlights different regions with distinct factors 
influencing TB cases: Purple-colored areas represent districts Bontoala, Tamalanrea, and 
Biringkanaya, where the percentage of the productive-age population (X1) is the primary 
influencing factor. Orange-colored areas indicate that in Manggala and Ujung Pandang 
districts, population density (X5) is the significant factor affecting TB cases. Blue-colored 
areas show that in Rappocini and Ujung Tanah districts, the influencing factors include the 

percentage of the productive-age population (X1), number of healthcare facilities (X2), and 
percentage of the impoverished population (X3). Similar classifications apply to other district 
groups as represented on the map. 

Thus, the GWPR model with Fixed Bisquare Kernel weighting varies across districts. For 
example, in Mariso District, the estimated model is as follows: 

𝜇̂(𝑢3𝑣3) = exp(524,92 − 1030,62𝑋1 − 28,14𝑋2 +  443,43𝑋3 +  0,43𝑋4 +  0,0047𝑋5 ) 

Based on this model, the following interpretations can be made: A one-unit increase in the 
percentage of the productive-age population (X1) is estimated to decrease the number of TB 

cases by a factor of exp (-1030.62) = 2.55 × 10⁻⁴. A one-unit increase in the number of 
healthcare facilities (X2) is estimated to decrease TB cases by a factor of exp (-28.14) = 6.01 

× 10⁻¹³. A one-unit increase in the percentage of the impoverished population (X3) is 

estimated to increase TB cases by a factor of exp (443.43) = 3.79 × 10¹⁹. A one-unit increase 
in the number of households practicing PHBS (X4) is estimated to increase TB cases by a 
factor of exp (0.43) = 1.537. A one-unit increase in population density (X5) is estimated to 
increase TB cases by a factor of exp (0.0047) = 1.0047. However, the result for PHBS 
households (X4) appears unrealistic, as an increase in PHBS households should theoretically 
reduce TB cases Several contextual factors may help explain the unexpected results regarding 

Map Legend 



 
 

Meliyana, et.al., ARRUS Journal of Social Sciences and Humanities, Vol. 5, No. 2 (2025)  
https://doi.org/10.35877/soshum3812 

 
  ISSN:  2776-7930 (Print) / 2807-3010 (Online) 

 

 

 
 

This open access article is distributed under a Creative Commons Attribution (CC-BY-NC) 4.0 
license.  

907 

PHBS (Clean and Healthy Living Behavior). Although PHBS programs are widely promoted 
across Indonesia, the reported number of households categorized as compliant may not 
accurately reflect actual behavioral practices. This discrepancy may stem from the reliance on 
self-reported data or limited observational verification, potentially introducing bias and 
overestimating adherence levels (Ministry of Health RI, 2021). 

Furthermore, environmental conditions commonly found in densely populated urban areas, 
such as household crowding, inadequate ventilation, and insufficient natural lighting, can limit 
the effectiveness of individual healthy practices in preventing the airborne spread of 
tuberculosis. Thus, even with proper PHBS implementation at the household level, 
unfavorable living conditions may still facilitate TB transmission (Lönnroth et al., 2009). 
Another plausible explanation is that regions reporting higher PHBS rates may also possess 
stronger public health infrastructure and surveillance systems, resulting in increased case 
detection rather than a true elevation in TB incidence (Sharma & Mohan, 2020). 

These considerations suggest that while PHBS remains a valuable public health initiative, its 
measurement alone may not sufficiently capture the multifaceted interaction between 
individual behavior, environmental exposure, and healthcare system capacity in influencing 
TB transmission risk. 

5. Conclusion 

Based on the conducted tests, the following conclusions can be drawn: 

The models produced using GWPR with Fixed Bi-square Kernel weighting and GWPR with 
Fixed Gaussian Kernel weighting exhibit spatial variation across different districts in 
Makassar City. For instance, the GWPR model with Fixed Bi-square Kernel weighting for 
the Mariso District is represented as follows: 

𝜇̂(𝑢3𝑣3) = exp(524.92 − 1030.62𝑋1 − 28.14𝑋2 +  443.43𝑋3 +  0.43𝑋4 +  0.0047𝑋5 ) 

The significant factors influencing TB cases in Mariso District, Makassar City, in 2022 include 
the percentage of the productive-age population (X1), number of healthcare facilities (X2), 
percentage of the impoverished population (X3), number of households practicing PHBS 
(X4), and population density (X5). 
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